


Preface 
 

This handbook for routing interconnects inside a VLSI chip provides mathematical 
models of important classes of wiring techniques for students interested in gaining insights in 
integrated circuits layout automation techniques and for practicing engineers working in the field 
of electronic design automation (EDA). This book presents a comprehensive review on VLSI 
routing techniques that was undertaken in early 1990’s with a view to developing a generalized 
routing accelerator that could speed up routing chores for different styles of wiring techniques, 
namely, maze routing used widely for connecting different circuit blocks by finding the shortest 
path, channel routing used in connecting standard cells of uniform heights and variable widths 
arranged in the form of rows of cells, switchbox routing used in connecting surrounding multiple 
blocks of dissimilar aspect ratios within an enclosed routing area, and so on.  

 
In 1988, when I started my academic career at the University of Michigan, I designed a 

new graduate-level course on computer-aided design, EECS 527: VLSI Layout Algorithms. The 
course was introduced to educate graduate students and spur doctoral research in the-then 
burgeoning field of computer-aided design (CAD) for integrated circuits (ICs) that propelled the 
exponential growth of integration density in VLSI chips, as postulated by Moore’s Law. At that 
time, there was no suitable textbook on the subject to teach graduate students about the state-of-
the-art layout algorithms that were key to design complex VLSI chips. Therefore, I combed 
through the literature on the subject and assembled the course materials in order to teach students 
systematically basic underlying mathematical techniques for circuit partitioning, floor-planning, 
cell placement, and routing. Subsequently, I engaged my own doctoral students to expand my 
lecture materials in the form of comprehensive reviews.  

 
For example, with the assistance of my doctoral student, Dr. K. Shahookar, who studied 

the Genetic Algorithm (GA) for VLSI cell placement techniques, I coauthored a 78-page review 
paper, which was published in ACM Computing Surveys in June 1991. After poring over nearly a 
hundred publications on placement algorithms for standard cells and macro-cells, I divided them 
into five main categories: (i) the placement by simulated annealing, (ii) the force-directed 
placement, iii) the placement by min-cut graph algorithms, (iv) the placement by numerical 
optimization, and (v) the evolution-based placement. While the first two types of algorithms owe 
their origin to physical laws, the third and fourth are analytical techniques, and the fifth class of 
algorithms is derived from biological phenomena. The taxonomy of placement algorithms was 
created to study inherent parallelism of the different classes of algorithms. While designing the 
course, I realized that in order to push the mammoth potential of Moore’s Law, the chip design 
phase must be accelerated several folds by harnessing the evolving computing platforms.   

 
In the late 80’s, the computing platforms for the VLSI design environment were rapidly 

transforming from mid-frame computers, namely, Digital Equipment Corporation Vax 11/780, 
Hewlett Packard HP 3000, and Wang Laboratories Wang VS, to the network of workstations, 
what is widely known as the NOW. This opportunity in hardware evolution warranted deeper 
insights into VLSI cell placement and routing (P&R) techniques so that sequential algorithms 
that used to run on standalone mid-frame computers could be rendered into parallel CAD 
algorithms for running efficiently on the NOW platform. Also, emergence of commercial parallel 



computers such as Intel hypercube and Sequent Computer System shared memory had further 
pushed the needs for developing parallel P&R algorithms.  

 
In order to promote the NOW platform for EDA research, I started working with my 

students to develop imaginative distributed Genetic Algorithms (GAs) for partitioning, 
placement and floor-planning techniques needed in VLSI chip layout automation. My research 
group had at that time developed an EDA tool, named Wolverines for parallel implementation of 
standard cell placement algorithms on the NOW platform. Since workstations are connected by a 
local area network (LAN) that often deploys the Ethernet to connect different workstations, 
communication of packets between two specific workstations generally require considerable time 
even when the Ethernet did not undergo collision of message packets. Because of the length of a 
LAN, two workstations located afar may locally sense and infer that the Ethernet is free and may 
launch packets asynchronously. In case, there is a collision of packets, all the senders must 
abandon transmission by backing off. Then they wait randomly within the range of time before 
attempting to transmit the packet. If a sender encounters the collision of packet again, it then 
waits randomly over a period of time that is twice longer than the previous time period.  This 
exponential backing off protocol used in random-access LAN causes a severe constraint to run 
parallel routing algorithms because of their fine-granularity of parallelism in contrast with 
placement algorithms that do not require frequent communications in parallel mode of operation 
over the NOW.  

 
Therefore, the vision I had at that time is to develop distributed version of Genetic 

Algorithms (GAs) that can accelerate the partitioning, floor-planning and placement of cells on 
the NOW without requiring any hardware augmentation of workstations. The main impediments 
we encountered at that time were that unlike simulated annealing and graph-based techniques, 
the GAs could not be directly applied to solve VLSI layout problems. Professor John Holland, 
who invented the Genetic Algorithm at the University of Michigan, had devised the GA to solve 
a plethora of theoretical and practical problems that quintessentially required functional 
optimization. The GA applies its biology-inspired operators such as crossover, mutation and 
inversion in the genotype or chromosomal representation of the problem. The fundamental 
premise in GA is that genetic codes of biological creatures encapsulate their physical 
characteristics. The crossover operator in the GA produces offspring by splicing fragments of 
two different chromosomes pertaining to the two parents. Therefore, the GA applies all its 
transformations by combining the features of chromosomes on the genotype of a problem. In 
order to obtain the solution of a problem, the genotype is mapped on to its phenotype or physical 
appearance. It is well known that the functional optimization problems work very well with GA 
type algorithms since there are no inconsistencies between the genotype and phenotype of a 
problem. In other words, the genetic codes always generate feasible solutions in functional 
optimization problems. 

 
 However, the EDA algorithms for placement is a constrained combinatorial optimization 

problem where the genotype and phenotype must be carefully handled to ensure that all the cells 
are included in the phenotype and there are no duplication of cells.  Traditional crossover 
operator used in the GA may produce infeasible solutions, unless before the application of each 
crossover operation pre-processing of the chromosome is performed carefully. In my book, 
Genetic Algorithms for VLSI Design, Layout and Testing, Prentice Hall, 2000, coauthored with 



Dr. Elizabeth Rudnick, we have discussed Order Crossover, PMX Crossover and Cycle 
Crossover operators to eliminate infeasible solutions. However, we discovered that they incur 
significant timing overhead as the entire pair of chromosomes has to be scrutinized and evaluated 
to generate new offspring. These issues become very unwieldy as the problem size increases 
with the scaling of VLSI chips and may require a suboptimal divide-and-conquer strategy to 
strike a tradeoff between run-time and the solution quality.  

 
Further, such improved crossover operators work for only the permutation class of 

problems such as standard cell placement techniques. The GA book discusses a refined version 
of the standard cell placement technique, called Simulated Annealing and Genetic Algorithm 
(SAGA) to improve the quality of cell placement solution. The algorithm runs like genetic 
algorithm initially to rapidly converge to a solution very close to the global optimization. And, 
then it slowly morphs into simulated annealing by increasing the mutation rate that iteratively 
applies random displacement of a single cell, instead of movements of multiple cells associated 
with the crossover operation. For macro-cell placement, the book discusses multidimensional 
compact crossover operators that can be innovated by using complex data-structures used in 
Heapsort algorithms. The book also shows how GA based EDA tools can be implemented on a 
network of desktop workstations to run super linearly while accruing the solution quality 
comparable to the ones achieved by running on a standalone processor. Especially, we studied 
different topologies of virtual sockets such as star, ring and hypercube between different 
workstations. We also experimented with the rate of communications (epoch) between different 
workstations to improve the quality of solution. From these various experimental results on a 
suite of benchmark circuits and comparing them with the results obtained by using cutting-edge 
EDA tools, we demonstrated that the GA has intrinsic parallelism mechanisms that can be 
cleverly exploited to develop parallel EDA tools for cell placement, which run efficiently on the 
NOW platform.  

 
 However, the VLSI routing algorithms such as maze, switchbox and channel routings 

require fine-grained parallelism that cannot be accomplished on a LAN because of uncertain 
delay associated with workstation-to-workstation communications. In order to support fine-
grained parallelism in maze routing several special-purpose hardware such as NTT Adaptive 
Array Machine, IBM Wire Routing Machine, Waseda University Toroidal Machine, and 
University of Southern California L-Machine were built. In our maiden effort to develop 
hardware accelerator for maze routing, my research group had built the Hexagonal Array 
Machine that could support three-dimensional routing by concurrently propagating waves over 
multiple layers. Unlike the 2-D maze router that propagates waves from 4 neighbors of a base 
cell, the HAM propagates from 6 neighbors that include a grid point in the upper layer and 
another in the lower layer. Therefore, HAM finds the shortest path that may meander through 
multiple layers, if a path exists. Therefore, this feature of HAM reduces the need for rip-up and 
rerouting, as frequently demanded by 2-D maze routers due to the greedy nature of the maze 
search algorithm. 

 
After realizing the key limitations of such dedicated routing accelerators that could only 

speed up the maze routing, my student, Dr. V. Ramachandran, who is the coauthor of this book, 
started looking into the possibility of developing a unified routing fabric that can be utilized to 
accelerate all sorts of VLSI routing algorithms. In his doctoral work, he proposed a polymorphic 



architecture that mainly comprises an ensemble of simple processing elements that can be 
configured into various connection topologies by including a suite of switches in each processing 
element. The highly parallel single instruction multiple data (SIMD) architecture is generally 
known as Content Addressable Array Parallel Processor (CAAPP) and has been originally 
developed for image processing applications. Specifically, Dr. Ramachandran had used the 
CAAPP software framework to experiment with the virtual polymorphic hardware fabric, on 
which different types of routing algorithms including maze, channel and switchbox were mapped 
as reported in Section 5.3 in this book.  

 
My overall vision in EDA was to develop distributed networks of workstations furnished 

with specialized hardware accelerator board containing the polymorphic chip to accelerate 
different styles of VLSI routing algorithms, while Genetic Algorithms will speed up the cell 
placement algorithms. Due to funding constraints, in our research group we could fabricate a tiny 
proof of concept polymorphic chip as shown below. The purpose of this handbook is not only to 
introduce different styles of VLSI routing algorithms, but also to exposit the ramifications of 
hardware-software co-design for such fine-grained parallel algorithms over a polymorphic fabric 
so that various types of chip routing algorithms can be accelerated, while the placement and 
floor-planning algorithms will be speeded up by leveraging the intrinsic parallelism of genetic 
algorithms. With this vision in mind, I hope that readers will be motivated to advance the 
frontiers of VLSI chip design through innovating hardware-software co-design methods as 
espoused in this routing handbook. 
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